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Abstract .  The scaling equations which determine the master functions for the 0- 
relaxation process within the mode coupling theory of supercooled liquids are refor- 
mulated such that a direct numerical solution becomes possible. Tables are presented 
that allow an accurate derivation of the scaling function and susceptibilities by ele- 
mentary manipulations. As an example of their application the /3-peak scenario as 
predicted by the theory is demonstrated. 

Within the mode coupling theory of structural glass transitions a certain regime of 
supercooled liquid dynamics, referred to as a p-relaxation regime, was identified. In 
this regime conventionally defined correlation functions or fluctuating force kernels, 
formed with two variables C and D ,  can be written as 

Here the so-called non-ergodicity parameter f;, and the critical amplitude h,, reflect 
the specific properties of the system’s microscopic structure and also of the variables 
C and D;  but fcD and h,, are independent of time t .  The time dependence is 
described by G ( t ) ,  which is independent of C and D. Equation ( la )  is obtained as an 
exact asymptotic result of the non linear equations of motion near the glass transition. 
It holds for all pairs of variables X = C, D for which the overlap with some product of 
density fluctuations pq does not vanish ( X p q l p q z  . . . pq,) # 0 [l]. There are corrections 
to the specified asymptotic law, which depend on all microscopic details of the system. 
The corrections are different for different pairs of variables C, D.  At present it is not 
possible to calculate the size of the corrections for realistic systems. The function G(t )  
depends sensitively on the microscopic details via a correlation scale c, and a time 
scale t u  : 

The two scales vary as power-law functions of the separation c from the glass transition 
singularity; but this will not be considered in this paper. The scaling function g is 

t This paper is dedicated to Professor W Wild on the occasion of his 60th birthday. 
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not universal; but it, depends regularly on one single number X only. This A ,  called 
exponent parameter, as well as f&, and h,, depend smoothly on the parameters 
specifying the system. For the model of a one component system, A ,  f c ,  h and r can 
be expressed by complicated but mathematically well understood formulae in terms 
of the structure factor. In this sense these parameters can be considered as known 
regular equilibrium quantities. The strong temperature variations of spectra near the 
glass transition are caused by the strong variations of the two scales; and the non- 
trivial spectral shapes are given by the scaling function g. The latter obeys the scaling 
equation 

Here E = 1 specifies the liquid side of the liquid to glass transition and E = -1 holds 
for the glass side. The  Laplace transform LT for complex frequency z is used with the 
convention 

rW 

LT[g(t)](z) = g(z) = dt exp(izt)g(t) Init  > 0. ( 3 a )  

For real frequencies w ,  with z = w + io, one obtains 

The spectrum g” and the reactive part g’ can also be obtained as Fourier transforms 

W 

cos(wt)g(t) dt g’(w) = 1 sin(wt)g(t) dt. ( 3 c )  

The susceptibility x ( w )  = x’(w + ix”(w) is related to g(w) trivially: wg(w) = x ( w ) .  
For a more detailed discussion of the theory, of the original references and of possible 
applications to  experiments, the reader is referred to a recent review [ a ] .  

Measurable quantities for which the preceding formulae are suggested to be ap- 
plicable are dielectric functions, coherent and incoherent neutron scattering laws, and 
elastic moduli. These examples deal with auto-correlations and the variables C = D 
refer, respectively, to  the dipole moment, the particle density and tagged particle den- 
sity, and the stress. The factorization property ( l a )  implies that  the time variation 
of dcc - fcc is the same for all these quite different quantities, up to the prefactor 
hCc.  Also the scaling behaviour, formulated by ( l b ) ,  is a rather specific prediction. 
A first successful test of ( l b )  was reported for coherent neutron scattering properties 
of the glass-forming compound CaKNO, [ 3 ] .  Dielectric loss measurements of a cer- 
tain polymer follow ( l b )  and obey the predicted variations of the scales c,,t, quite 
well [4]. The factorization property was verified by neutron scattering [5] and also by 
molecular dynamics work for a binary alloy model [6]. Recently published dynamical 
light scattering experiments confirm ( l b )  qualitatively [7]. So by now it  is evident that  
there are some systems where the preceding formulae apply qualitatively. It is obvious 
in particular that  the experimental techniques for testing the theory are available. For 
these reasons it seems timely to present the precise theoretical results for the master 
function g(t) and for the corresponding spectra g” ,  ,y’/. It is the purpose of this paper 
to extend the previous theory of the scaling equation (2) ,  to provide the quantitative 
details for g ,  and to  illustrate the results for the representative value X = 0.7.  
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To begin the discussion, let us recall the results that  were derived originally [$I. 
The properly norma.lized scaling function exhibits the sliort-time asymptotic expansion 
g = g1 + O(t”), where 

g l ( t )  = ( l / t a )  - Alia  

A ,  = + / [ r ( i  - a)r(i + a )  - A]. 

So in leading order the scaling funct,ion exhibits the same critical decay g - l / t a  for 
the liquid and for the glass. For long times the scaling function of the glass approaches 
a constant: 

g( t  ---$ CO) = 1 / m  E = -1. 

For the liquid there occurs a,nother power-law divergency 

g( t )  = g6(q + 0 ( 1 / t ~ ~ ) ~  = $1 

g b ( t )  = -Bib + ( B 1 / B ) / t b  B > 0 
B, = (1/2)/[r(l + b)I’(l - b) - A]. 

( 5 )  

The numbers 0 < a < 1 / 2 , 0  < b 5 1 are the critical exponents of the theory related 
to  the exponent parameter via 

I?( 1 - a ) 2 / r (  1 - 2 a )  = A = I’(1 + b ) 2 / r (  1 + 2b) .  (7) 

The crossover from the critical deca.y to  the von Schweidler behaviour g ( t )  - -Btb 
for the liquid, requires the existence of a zero, to be denoted by t*:  

g ( t * )  = 0 E = 1 .  (8) 

Similarly, the crossover from the sublinear critical susceptibility variation x / / ( w  >> 1 )  
0; wa to  the von Schweidler asymptote x / / ( w  << 1 )  0: l / w b  implies the existence of a 
susceptibility minimum. Let us use the notations 

f3x”(w)/dw = 0 

x* = x / / ( w * )  

w = w* 

E = +l .  
(9) 

The four numbers B ,  t*  , w* and x* are examples of parameters specifying the liquid- 
state P dynamics. These numbers are given by A, or, equivalently by one of the 
exponents a or b. Experimental test of the predicted connection of, say, a with one 
of the four numbers would be a rather direct check of the relevance of the theory. 
So far the mentioned connections were unknown and tests of the function g ( t )  relied 
on verifying the leading power-law behaviour and the equation (7) relating the two 
fractal dimensionalities a and b. But it is much more advisable to  test the theory in 
the intermediate range t - t * ,  w - w *  for the following reason. Results ( l a )  and ( l b )  
hold only asymptotically in the scaling limit U - O, t / t ,  fixed [l]. In an experiment 
one gets U # 0 results, which are spoiled by unknown corrections to the scaling laws. 
Such corrections occur for t + 0,  because of microscopic transient effects. They occur 
also for t + 00 because there the Q relaxation process takes over. The corrections to  
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the asymptotic laws are smallest in the center of the P region, specified by W *  or t * .  
Previously the intermedia,te region was described by the ad hoc interpolation formula 
gint(t) = (l/t') - Btb,  using B as a free fit parameter [9]. This simple expression is 
useful as a first at tempt for data analysis, in particular if there are large experimental 
uncertainties anyway. The quality of dielectric loss data presumably requires a more 
adequate description of g(t). The formula implies, for example, trnt = (l /B)l/(atb).  
For X = 0.7 one gets from the proper coefficient B ,  to  be calculated below, trnt = 1.49. 
The correct result, to  be calculated below, is t* = 0.85. This discrepancy is outside 
the error bars of the results in [7]. 

To proceed, let us consider the convolution integral 

The mentioned short-time expansion of g(t)  implies for the behaviour of f ( t ) :  

f ( t )  = [X/(1 - 2 ~ ) ] t ' - ' ~  - 2A, r ( l  - a ) r ( l +  a)t  + O(t ' t2a).  (lob) 

In particular f ( t  = 0) = 0, and therefore Laplace ba,ck transform yields for (2): 

(10c) 
d 

- 6 + Xg(t)' = zf(t). 
This result makes it plain that the scaling equation is an implicit non-linear integro- 
differential equation. For the derivation of the power-law behaviour (4a) or (6b) the 
leading cancellation of the two non-linear terms in (2) is essential. In order to  restore 
the symmetric role of these two terms one can integrate (1Oc). In this manner one 
reformulates the scaling equation into the following equivalent form 

limtag(t)  = 1. 
t-0 

The causality of the P-relaxation theory is now quite transparent: the properties of 
g(t) for t > t o  do not enter the equation for the master function on the time interval 
0 < t 5 t o .  The  crucial retardation effects are expressed by the convolution integral: 
all the properties of g ( r )  for 0 < r < t are needed to determine g(t). Formula ( l l a )  
is most convenient for extending the expansion (4a): 

g(t) = gn + o( t ( ' n+ ' )a  1 
g,(t) = ( l / t a )  - Alia + A,t3a - + (-1)"A,t(2n-')a. 

(12a) 

(12b) 

For the coefficients A, one obtains the recursion relation [7]: 
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Here z, = -a + ~ K U .  Fourier transformation gives corresponding expansions for the 
susceptibility: 

x y w )  = x ; ( w )  + O(l/W(2"+1)" 1 

A: = -A, sin(wz,/2)r(l + 2,). 

(14a) 

= - AY/wa + . . . + (-1)nA:/w(2n-1)a (14b) 

(14c) 

In the analogous formulae for ~ ' ( w )  enter the coefficients: 

A; = -A, cos(xz,/2)r(i  + z,). ( 1 4 4  

For an efficient numerical treatment of the sca.ling equation it is preferable t o  avoid 
convolutions of two singular functions. This goal can be achieved by splitting g ( t )  in 
some known singular part and a more regular remainder. In the following the version 
below will be applied: 

From ( l l a )  one reformulates the scaling equation as one for the function g r :  

(15b) 

(15c) A,, = Af [(r(l+ u)' /r(l  + 2.)) - A] / ( 1 +  2a). 

The remainder function exhibits the asymptotic behaviour g , ( t )  = A2t3' + O(t"). 
A discretization of the preceding equation has been performed as follows. On a grid 
t '  = h . j, j = 0, 1 , 2 , .  . . , the function gr  is approximated by a polygon, interpolating 
linearly between the values g r ( t j )  = gj. Since then the curly brackets in (15b) reduce to  
piecewise linear functions one can carry out the integrals easily. As a result the scaling 
equation (15b) reduces to  a quadratic equation for y = g ( t , )  : (-Ah/2)y2+C,y+D, = 
0 .  Here C, is given in terms of A,,  X and h .  The coefficient D, can be expressed in 
terms of A l l , h  as well as all the g j  with j < n. Solving the elementary equation 
yields y in terms of g,, g,, . . . , Q , - ~ .  The procedure was started with g l ,  evaluated 
from the approximation g ( h )  g3(h).  A step size h = 0.1 was sufficient to  fix g ( t )  
with an accuracy of Since the algorithm is very efficient, it was not improved 
any further by the obvious possibility of increasing the stepsize with increasing t .  The  
Fourier transforms ( 3 c )  are evaluated as follows. First one splits off the long-time 
asymptote by writing g = f, + S g  for c = -1 and g = g b  + 6g for E = $1. Then a 
filter is introduced to  isolate the short-time singularity: 6 g ( t )  = F ( t / r ) S g ( t )  + Sg,(t). 
Here F ( t )  = (1 + t )  exp -t was chosen and r was adjusted such that F ( t / r ) S g ( t )  M 
F( t /7 )Sg3( t ) .  Here 69, is obtained from g3  in ( l2a)  by the proper subtractions. Then 
all integrals can be worked out a.nalytically, except for the one involving S g , ( t ) .  The 
latter is done approximately, by replacing S g ,  in (3c) by a polygon. 

Some further mathematical comments concerning the scaling equation may be of 
interest. One can work out from (13) the asymptotic behaviour of the coefficients 
A, for large K in order to understand that g ,  +. g ( t )  on a finite non-zero interval 
0 < t < t , .  So there is a solution of (11) on a non-trivial time interval, and i t  can be 

3 
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Table 1. Relationship bet.ween the exponent parameter A and the exponents a and 
b (equation (7)). See the text for details. 

x a b x a b 

0.500 0.395 1.000 0.740 0.309 
0.520 0.390 0.961 0.760 0.300 
0.540 0.384 0.922 0.780 0.290 
0.560 0.377 0.885 0.800 0.279 
0.580 0.371 0.848 0.820 0.267 
0.600 0.364 0.812 0.840 0.255 
0.620 0.358 0.777 0.860 0.241 
0.640 0.350 0.742 0.880 0.226 
0.660 0.343 0.708 0.900 0.209 
0.680 0.335 0.674 0.910 0.200 
0.700 0.327 0.641 0.920 0.190 
0.720 0.318 0.608 0.930 0.180 

0.575 
0.542 
0.509 
0.476 
0.443 
0.409 
0.375 
0.339 
0.303 
0.284 
0.264 
0.244 

evaluated there with any desired accuracy from (12). Let us assume that there is a 
continuous function gO(t) , defined for 0 < t _< t o ,  which obeys (1 1)  for t 5 t o .  Let us 
write g O ( t )  = F ( t ) / i " ,  so that F ( t )  is continuous for 0 5 t 5 t o  with 

~ ( t )  = 1 - A , P  + o(t49. 

g(t, + s) = f(s)  

(16a) 

(16b) 

Let us also write t = t o  + s and denote the continuation of go by f: 

0 5 s 5 t o .  
Then (1 1) leads to  the equation for f: 

l ' ( s  - E)-"F(s - W E )  dE = i ( s ) .  

Here the inhomogeneity consists of a known part io and a simple non-linear term 

i ( s )  = io(s) + I' d( 2 

This is a smooth function of s and i ( s  = 0) = 0. For given i ( s ) ,  equation (16c) is an 
example of a generalized Abel's equation. The standard theory of this equation yields 
the result for the unique solution in the form 

f(s)  = 1' IC(S - 7) [ i b ( ~ )  + ( A / 2 ) f ( ~ ) ~ ]  d r  

where the kernel IC can be expressed as some Neuniann series. The proof, however, 
anticipates F ' ( t )  to  be continuous, while the present F' exhibits a power-law diver- 
gency. I conjecture that this integrable singularity does not spoil the usual proof, so 
that (17) is an equivalent form for the scaling equation with a known weakly singular 
kernel Ii'. Equation (17) has the same form as the Piccard integral equation except 
for the mentioned singularity. I further conjecture that this does not spoil the usual 
proof of existence and uniqueness of the solution of (17). By continuation, the method 
based on (16) can then be ext.ended to any finite time interval. If one could prove 
the two conjectures one could put the theory of the ,&process on a firm mathematical 
basis. 
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Table 2. The first three coefficients of the short-time expansion (12). See the text 
for details. 

0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 
0.700 
0.720 

0.616 -0.053 
0.640 -0.057 
0.666 -0.061 
0.695 -0.065 
0.726 -0.070 
0.761 -0.076 
0.799 -0.083 
0.841 -0.090 
0.888 -0.098 
0.940 -0.108 
1.000 -0.120 
1.067 -0.133 

0.0040 
0.0042 
0.0045 
0.0048 
0.0051 
0.0054 
0.0058 
0.0061 
0,0064 
0.0067 
0.0069 
0.0069 

0.740 
0.760 
0.780 
0.800 
0.820 
0.840 
0.860 
0.880 
0.900 
0.910 
0.920 
0.930 

1.145 
1.235 
1.342 
1.469 
1.624 
1.816 
2.062 
2.388 
2.842 
3.143 
3.518 
3.997 

-0.150 
-0.170 
-0.194 
-0.225 
-0.264 
-0.316 
-0.387 
-0.489 
-0.643 
-0.753 
-0.898 
- 1.096 

0.0068 
0.0061 
0.0048 
0.0022 

-0.0027 
-0.0119 
-0.0292 
-0.0635 
-0.1367 
-0.2040 
-0.3112 
-0.4907 

Table 3. Coefficients for t,he long-time asymptote (6b). See the text for details. 

x B Bi t *  x B BI t' 

0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 
0.700 
0.720 

0.228 
0.255 
0.284 
0.317 
0.353 
0.393 
0.438 
0.488 
0.545 
0.609 
0.681 
0.765 

0.000 
0.021 
0.044 
0.069 
0.096 
0.126 
0.158 
0.194 
0.234 
0.278 
0.327 
0.384 

1.571 
1.508 
1.443 
1.376 
1.308 
1.237 
1.164 
1 .OS8 
1.011 
0.932 
0.851 
0.767 

0,740 
0.760 
0.780 
0.800 
0.820 
0.840 
0.860 
0.880 
0.900 
0.910 
0.920 
0.930 

0.861 
0.974 
1.107 
1.266 
1.459 
1.700 
2.006 
2.410 
2.967 
3.3x3 
3.784 
4.355 

0.448 
0.523 
0.610 
0.715 
0.843 
1.002 
1.207 
1.480 
1.864 
2.120 
2.442 
2.857 

0.683 
0.597 
0.512 
0.427 
0.344 
0.264 
0.1898 
0.1243 
0.0704 
0.0488 
0.0313 
0.0180 

The result of the numerical work will be presented in the form of tables. These 
contain a complete list of that  information necessary for the reader to  construct all 
functions by himself by elementary manipulations with an error of the the order of 1%. 
Table 1 presents the relation (7) between exponent parameter X and the exponents a 
and b.  Table 2 presents the first three coefficients for the short-time expansion (12). 
Table 3 gives the two coefficients for the long-time asymptote (Gb) of the liquid as well 
as the zero, (8), for the correlation function. B and t' have been read off from the 
solution of (15). Since in all cases t' is below the radius of convergence t ,  of the series 
(12b), one can calculate it also by pushing the series expansion to  sufficiently high 
order. The numbers in table 2,  if necessary after interpolation, allow the evaluation of 
g3,  ( 1 2 b ) .  This approximation works up to times close to the radius of convergence t , .  
Not much can be gained on the usual logarithmic abscissa if one extends the expansion 
to gn with n > 3 .  The  numbers from table 3 allow the evaluation of the long-time 
asymptote g 6 ,  (Gb) .  In principle one can also extend the series (6) to higher order. But 
since this series is divergent, nothing is gained i n  this manner. It turns out that  near 
t ,  both expansions g3 and gb match with an accuracy of about 1%. This is illustrated 
in figure 1. So the tables provide the master functions g ( t )  easily with the specified 
accuracy, and series expansion cannot improve this result. Figure 2 shows the master 
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Figure 1. Scaling function g versus loglo i for X = 0.7. The broken curves are the 
asymptotic expressions 9 3  and 96 respectively. 

I I I I i 
i - 

- 

0 1 2 3 
I I I I 

1 2 3 4 :  0 

Figure 2. Scaling function g versus time i for X = 0.7. The dotted curves represent 
respectively the critical decay Ilia and the von Schweidler decay -B ib .  

curve for X = 0.7 on a linear abscissa. On such a presentation, which covers a bit more 
then one decade time variation, one cannot safely identify the leading asymptotes l / t a  
or -Bib. Both figures show that a save experimental test of the @-relaxation requires 
the detection of g ( t )  over three to  four decades. This is a severe problem reflecting 
the relaxation stretching. The latter is the very essence of glassy dynamics. 

In table 4 all the coefficients needed to evaluate the susceptibility approximation 
xB, (14), are compiled. Fourier transformation of (66) yields the low frequency result of 
the susceptibility, the von Schweidler behaviour and its first correction term: x ( w )  = 
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Table 4. Coefficients required to evaluate the susceptibility approximation (equation 
(14)). See the text for details. 

0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 
0.700 
0.720 
0.740 
0.760 
0.780 
0.800 
0.820 
0.840 
0.860 
0.580 
0.900 
0.910 
0.920 
0.930 

0.860 -0.318 
0.842 -0.326 
0.823 -0.335 
0.804 -0.345 
0.785 -0.356 
0.765 -0.367 
0.745 -0.379 
0.725 -0.392 
0.704 -0.406 
0.682 -0.422 
0.660 -0.439 
0.637 -0.458 
0.613 -0.479 
0.589 -0.503 
0.563 -0.530 
0.537 -0.561 
0.509 -0.598 
0.480 -0.641 
0.449 -0.693 
0.416 -0.757 
0.379 -0.841 
0.360 -0.892 
0.340 -0.954 
0.318 -1.028 

0.056 
0.059 
0.063 
0.068 
0.073 
0.078 
0.085 
0.092 
0.100 
0.109 
0.119 
0.131 
0.145 
0.161 
0.181 
0.205 
0.234 
0.272 
0.321 
0.387 
0.481 
0.545 
0.625 
0.729 

-0.0003 
-0.0007 
-0 .oo 11 
-0.0015 
-0.0020 
- 0.0026 
-0.0031 
-0.0037 
-0.0043 
-0.0049 
-0.0055 
-0.0059 
-0.0061 
-0.0058 
-0.0047 
-0.0022 
0.0028 
0.0124 
0.0306 
0.0661 
0.1392 
0.2040 
0.3042 
0.4655 

-1.203 
- 1.200 
-1.197 
-1.194 
-1.191 
-1.188 
-1.184 
-1.181 
-1.177 
-1.174 
-1.170 
-1.165 
-1.161 
-1.156 
-1.152 
-1.146 
-1.141 
-1.134 
-1.128 
-1.120 
-1.112 
-1.107 
-1.102 
-1.097 

-0.444 
-0.465 
-0.488 
-0.512 
-0.539 
-0.569 
-0.602 
-0.639 
-0.680 
-0.726 
-0.778 
-0.838 
-0.907 
-0.988 
- 1 .OS4 
-1.198 
-1.339 
-1.514 
-1.740 
-2.041 
-2.463 
-2.744 
-3.095 
-3.547 

-0.0167 
-0.0161 
-0.0153 
-0.0143 
-0.0131 
-0.0116 
-0.0097 
-0.0074 
-0.0045 
-0.0009 

0.0036 
0.0092 
0.0164 
0.0257 
0.0377 
0.0537 
0.0754 
0.1055 
0.1489 
0.2141 
0.3183 
0.3953 
0.4994 
0.6453 

0.0078 
0.0080 
0.0083 
0.0085 
0.0087 
0.0089 
0.0090 
0.0091 
0.0090 
0.0088 
0.0085 
0.0079 
0.0070 
0.0058 
0.0040 
0.0016 

-0.0016 
-0.0057 
-0.0102 
-0.0138 
-0.0103 
-0.0003 
0.0233 
0.0753 

x b ( w )  + O ( W ~ ~ ) .  Here 

x r ( w )  = ( B;/W*) -t B','wb 

and a corresponding expression holds for xi. The necessary coefficients are compiled 
in table 5 together with the parameters for the susceptibility minimum. For the glass 
the low frequency susceptibility can be determined by moment expansions. 

gyw) = - +2 + o ( 4  (19a) 

g y w )  = ( - f ~ ~ )  + c lwl  + o(2)  = -1. (196) 

The moments are listed in table 6. One can achieve matching of the various asymptotic 
formulae with an error in the region of 1-5% level. This is illustrated in figure 3. One 
notices again that the dynamics has to  be studied over a t  least three decades in order 
to safely determine the relevant part of the @-spectrum. 

Let us demonstrate the applicability of the presented results and complete the 
earlier discussion of the @-relaxation process by three figures. Figures 4 and 5 show as 
full curves the density correlator $( t )  and the tagged particle density correlator $s ( t )  
evaluated numerically as solution of the full mode coupling equations for a certain 
schematic model (curves G in figure 3 of [9] and in figure 5 of [lo]). Figure 6 shows a 
double logarithmic plot of the susceptibility spectrum for the correlator $( t )  (curve G 
of figure 4b in [9]). In these cases one knows that X = 0.7 and the values for the non- 
ergodicity parameters f,, f,". Because of the universality of the @-process no further 
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Table 5. Coefficients required to evaluate the low-frequency result of the suscepti- 
bility, the von Schwindler behaviour and the latter’s first correction term. See the 
text for details. 

x B t  BY 81, BI W’ X *  

0.500 0.228 2.193 0.000 -0.000 0.598 1.194 
0.520 0.250 2.032 0.016 -0.126 0.637 1.198 
0.540 0.273 1.888 0.034 -0.232 0.679 1.201 
0.560 0.298 1.747 0.055 -0.320 0.725 1.204 
0.580 0.324 1.618 0.079 -0.394 0.775 1.207 
0.600 0.351 1.499 0.107 -0.456 0.831 1.209 
0.620 0.381 1.386 0.139 -0.507 0.893 1.211 
0.640 0.411 1.281 0.176 -0.550 0.966 1.213 
0.660 0.445 1.182 0.220 -0.584 1.050 1.215 
0.680 0.480 1.091 0.270 -0.613 1.151 1.217 
0.700 0.517 1.007 0.327 -0,637 1.271 1.218 
0.720 0.558 0.926 0.396 -0.656 1.420 1.219 
0.740 0.602 0.851 0.475 -0.672 1.607 1.220 
0.760 0.651 0.780 0.570 -0.684 1.850 1.221 
0.780 0.704 0.713 0.684 -0.693 2.119 1.222 
0.800 0.762 0.650 0.822 -0.701 2.624 1.223 
0.820 0.828 0.590 0.992 -0.708 3.273 1.224 
0.840 0.903 0.533 1.207 -0.712 4.282 1.224 
0.860 0.990 0.479 1.483 -0.717 5.982 1.225 
0.880 1.093 0.426 1.852 -0.722 9.178 1.225 
0.900 1.218 0.374 2.366 -0.727 16.315 1.225 
0.910 1.293 0.349 2.707 -0.731 23.517 1.225 
0.920 1.378 0.324 3.129 -0.735 36.761 1.225 
0.930 1.478 0.299 3.666 -0.741 64.049 1.225 

Table 6 .  Moments for the low-frequency susceptibility (equation (19)). See the text 
for details. 

0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 
0.700 
0.720 

0.805 
0.767 
0.729 
0.690 
0.651 
0.610 
0.569 
0.527 
0.484 
0.441 
0.398 
0.355 

0.48 0.49 
0.44 0.43 
0.41 0.40 
0.38 0.35 
0.35 0.32 
0.32 0.28 
0.28 0.24 
0.25 0.20 
0.21 0.15 
0.18 0.12 
0.15 0.09 
0.12 0.07 

0.740 
0.760 
0.780 
0.800 
0.820 
0.840 
0.860 
0.880 
0.900 
0.910 
0.920 
0.930 

0.312 
0.269 
0.228 
0.187 
0.149 
0.113 
0.080 
0.051 
0.028 
0.019 
0.012 
0.007 

0.10 0.05 
0.08 0.03 
0.06 0.02 
0.04 0.01 
0.03 0.01 
0.02 0.01 
0.01 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

details of the models are of interest here. The details merely enter the corrections to  
the asymptotic laws. The scales 1, and hc, have to  be fitted if one wants to  connect 
the master curves g and x’’ of figures 1 and 3 via ( l a )  and ( l b )  to  the quoted results. 
This is done by fitting two values for the result in figures 4 and 5 and by fitting the 
minimum in figure 6. In the latter case the fit merely amounts to a parallel shift of 
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I 
1 

0 
0 -1 0 

log 10 

Figure 3. Master susceptibility spectrum x" veisus loglo w for X = 0.7. The broken 
curves are the various asymptotes discussed in the text. The dotted curve denoted 
by a is the critical spectrum A{wa and the one denoted by b is the von Schweidler 
spectrum B t / w b .  The upper curves refer to the liquid e = 1, the lower ones to the 
glass € = -1. 

0.6 

0.4 

0.2 

0 

Figure 4. Density correlator 9 as function of time from reference [9]. The broken 
curve exhibits the scaling law, ( l a )  and (lb), for A = 0.7. The dotted curves represent 
the leading power-law asymptotes. See text. 
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the master curve without changing its shape. One recognizes that the curves 4 , 4 '  
and x'' follow the asymptotic results respectively over 5.5 ,4 .5  and 4 decades. The 
leading power-law asymptotes l/t",A:w" and -Btb, B{/wb are indicated by dotted 
lines. Notice that on the basis of these asymptotes, the only information which was  
available in the previous work, one cannot really judge the relevance of formulae (1). 
Notice in particular that in figure 4 one can identify the critical decay, specified by 
the anomalous dimensionality a,  but not the von Schweidler law, characterized by the 
fractal dimensionality 6. For figure 5 there holds the opposite. Since f, is rather small 
in figure 4, corrections to  the scaling-law influence the long-time behaviour strongly. 
In figure 5 the corresponding quantity f," is big, and this is the reason for the von 
Schweidler law showing up so clearly. 

The strong deviations from the critical decay law, shown in figure 5, are caused 
by the &peak phenomenon [lo]. The latter appears if one set of modes, represented 

0 6  - 

0.4 - 

0 2  - 

I 

2 4 log,oitR) 
O b " " " ' -  

Figure 5. 
ence [lo]. The other symbols are used as in figure 4. 

Tagged particle density corielator 4s as function of time from refer- 

Figure 6 .  Susceptibility spectrum of the correlator from figure 4 taken from [9]. 
The broken lines are the scaling-law results for X = 0.7. The dotted lines are the 
scaling-law asymptotes wi th  slopes a and b ,  respectively. 
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here by 4’, couples very strongly and asymmetrically to the density fluctuations, 
represented here by 4. In the limit of strong coupling one can work out the P-peak 
susceptibility with the result [ll]: 

Here j jp = x*/C,  is the normalized dimensionless susceptibilit,y of the distinguished 
variable; z’ = z / C ,  is the dimensionless frequency of the system. v is a correlation 
scale related to  the separation parameter E by 

Quantity U measures the distance from the underlying bifurcation singularity of the 
theory. If one considers the temperature T as control parameter one can choose U = 
(T, - T)/T,, with T, denoting the crossover temperature. The remainding parameter 
is the dimensionless scaling time 1,  of ( l b ) ,  which can be expressed in terms of v and 
the critical exponent a by 

- L  - 2  0 2 4 log 3 

Figure 7. @-peak susceptibility spectra accoiding to (20a) for X = 0.7. The bold 
curve is the Cole-Cole result for v = U = 0. The curves above and below the a = 0 
curve refer to liquid and glass for various separation parametels IQ [  0: v2. 

Asymptotically, C,, C,, and C, are just positive numbers representing the link between 
the physics of a many particle system and the simple mathematical expression (20a).  
In realistic application one is not working in the strict asymptotic limit U 4 0. Then 
one can extend the range of applicability of the theory by incorporating e.g. tempera- 
ture dependencies of the various parameter like C, to C,. But these dependencies are 
smooth ones. All the sensitive variations, reflecting the bifurcation dynamics under 
study, are contained explicitly in the formula (20). C, links e.g. the systems dipole 
moment with the correlator of the theory. C, connects the microscopic internal time 
scale with the model parameter 1 .  C, connects the temperature with the mathemat- 
ical control parameter v. It is a non-trivial prediction of the mode coupling theory 
that no other information enters the result, except for the all important exponent 
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parameter A. The  latter determines exponent a in (20a) and (20c) and it  fixes the 
master function (;rg((;r). The results of this paper yield g(G) and figure 7 shows the /?- 
peak scenario for X = 0.7. In the limit v + 0 the @-peak is described by the Cole-Cole 
law 2 = 1/[1+ (-iZ)"] [ll]. This function is shown as the heavy line in the figure; it 
is a symmetric peak on a logarithmic frequency axis whose half width is as large as 
4.6 decades. If --D increases the susceptibility spectrum becomes larger, the resonance 
broadens and then it is changed to  a shoulder. This phenomenon is observed regularly 
and it simply means that  the /?-peak dimppears under the von Schweidler tail of the 
a-resonances. The theory under discussion predicts the quantitative details of this 
phenomenon. I t  predicts in particular that in those cases where there is no @-peak a t  
all, there should be a crossover from a l / w b  fractal spectrum to a l /wa  fractal. The 
former is the high-frequency tail of the a-peak and the latter is the high-frequency 
wing of the @-peak. The fractal exponents are related by (7). A corresponding spec- 
trum is shown for Y = 1 in figure 7. The conventional semi logarithmic presentation 
does not exhibit the l / w b  to  l /wa  crossover so clearly. As usual, a power-law crossover 
can only be clearly seen 011 a double logarithmic plot. On the low-temperature side 
of the transition two important, effect,s are exhibited in the figure. The  left wing of 
the resonance gets suppressed. Wit11 increasing U the /?-peak becomes more and more 
asymmetric and gets a form which is familiar from the a-resonances. Furthermore 
the peak height gets lowered. These effects are shown by the dielectric loss data  for 
polyvinyl acetate, to  mention just one experimental result [12]. The mode-coupling 
theory explains qualitatively how one arrives from Newton's equations of motion via 
some universal scaling equation to  resonance peaks with the well known glass dynam- 
ics signature. In particular, it identifies fractal time dynamics as resulting from the 
interplay of non-linear coupling with retardation phenomena. The fractals found re- 
sult, even though there is no fractal structure in the underlying configuration space. 
The fractals are the true reason for the stretching of the relaxation over many decades, 
as shown in the figures and detected for t,he @-peak in [12]. 
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